MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3 Steel vs. EN 1.4948 Stainless Steel

Both ACI-ASTM CF3 steel and EN 1.4948 stainless steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3 steel and the bottom bar is EN 1.4948 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 60
48
Fatigue Strength, MPa 270
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 510
610
Tensile Strength: Yield (Proof), MPa 250
210

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 420
410
Maximum Temperature: Mechanical, °C 960
930
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1450
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
17
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 16
15
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
3.0
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 20
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
230
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
22
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 4.3
4.5
Thermal Shock Resistance, points 11
14

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.080
Chromium (Cr), % 17 to 21
17 to 19
Iron (Fe), % 62.9 to 75
66.8 to 75
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 12
8.0 to 11
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015