MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3 Steel vs. EN 1.8893 Steel

Both ACI-ASTM CF3 steel and EN 1.8893 steel are iron alloys. They have 71% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3 steel and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
250
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 60
16
Fatigue Strength, MPa 270
470
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 510
830
Tensile Strength: Yield (Proof), MPa 250
720

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 960
410
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1450
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
2.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
1.7
Embodied Energy, MJ/kg 45
23
Embodied Water, L/kg 150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
130
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
29
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 4.3
11
Thermal Shock Resistance, points 11
24

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 17 to 21
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 62.9 to 75
95.6 to 98
Manganese (Mn), % 0 to 1.5
1.4 to 1.7
Molybdenum (Mo), % 0 to 0.5
0.3 to 0.45
Nickel (Ni), % 8.0 to 12
0.3 to 0.7
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.025
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12