MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3 Steel vs. Grade 15 Titanium

ACI-ASTM CF3 steel belongs to the iron alloys classification, while grade 15 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3 steel and the bottom bar is grade 15 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 60
20
Fatigue Strength, MPa 270
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 510
540
Tensile Strength: Yield (Proof), MPa 250
430

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 960
320
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1450
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 16
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.2
32
Embodied Energy, MJ/kg 45
520
Embodied Water, L/kg 150
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
100
Resilience: Unit (Modulus of Resilience), kJ/m3 160
870
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18
33
Strength to Weight: Bending, points 18
33
Thermal Diffusivity, mm2/s 4.3
8.4
Thermal Shock Resistance, points 11
41

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 17 to 21
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.9 to 75
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 12
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
98.2 to 99.56
Residuals, % 0
0 to 0.4