MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3M Steel vs. 2124 Aluminum

ACI-ASTM CF3M steel belongs to the iron alloys classification, while 2124 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CF3M steel and the bottom bar is 2124 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 55
5.7
Fatigue Strength, MPa 270
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
27
Tensile Strength: Ultimate (UTS), MPa 520
490
Tensile Strength: Yield (Proof), MPa 260
430

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1430
500
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 16
150
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 19
10
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 3.8
8.2
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
27
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1290
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 18
45
Strength to Weight: Bending, points 18
46
Thermal Diffusivity, mm2/s 4.3
58
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 21
0 to 0.1
Copper (Cu), % 0
3.8 to 4.9
Iron (Fe), % 59.9 to 72
0 to 0.3
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.5
0.3 to 0.9
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 13
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15