MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3M Steel vs. S40977 Stainless Steel

Both ACI-ASTM CF3M steel and S40977 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3M steel and the bottom bar is S40977 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 55
21
Fatigue Strength, MPa 270
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 520
510
Tensile Strength: Yield (Proof), MPa 260
310

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 420
390
Maximum Temperature: Mechanical, °C 990
720
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
6.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
1.9
Embodied Energy, MJ/kg 53
27
Embodied Water, L/kg 160
97

Common Calculations

PREN (Pitting Resistance) 27
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
92
Resilience: Unit (Modulus of Resilience), kJ/m3 170
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 4.3
6.7
Thermal Shock Resistance, points 12
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17 to 21
10.5 to 12.5
Iron (Fe), % 59.9 to 72
83.9 to 89.2
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 13
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015