MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3MN Steel vs. Grade 2 Titanium

ACI-ASTM CF3MN steel belongs to the iron alloys classification, while grade 2 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3MN steel and the bottom bar is grade 2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
150
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
23
Fatigue Strength, MPa 250
250
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
38
Tensile Strength: Ultimate (UTS), MPa 580
420
Tensile Strength: Yield (Proof), MPa 290
360

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1010
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1390
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 16
9.0

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.9
31
Embodied Energy, MJ/kg 53
510
Embodied Water, L/kg 160
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
92
Resilience: Unit (Modulus of Resilience), kJ/m3 210
600
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 20
28
Thermal Diffusivity, mm2/s 4.1
8.9
Thermal Shock Resistance, points 13
32

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 17 to 22
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.7 to 71.9
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 13
0
Nitrogen (N), % 0.1 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
98.9 to 100
Residuals, % 0
0 to 0.4