MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3MN Steel vs. C92900 Bronze

ACI-ASTM CF3MN steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3MN steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 580
350
Tensile Strength: Yield (Proof), MPa 290
190

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1390
860
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
58
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
35
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.9
3.8
Embodied Energy, MJ/kg 53
61
Embodied Water, L/kg 160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
27
Resilience: Unit (Modulus of Resilience), kJ/m3 210
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
11
Strength to Weight: Bending, points 20
13
Thermal Diffusivity, mm2/s 4.1
18
Thermal Shock Resistance, points 13
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17 to 22
0
Copper (Cu), % 0
82 to 86
Iron (Fe), % 58.7 to 71.9
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 13
2.8 to 4.0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7