MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3MN Steel vs. R58150 Titanium

ACI-ASTM CF3MN steel belongs to the iron alloys classification, while R58150 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3MN steel and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 39
13
Fatigue Strength, MPa 250
330
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
52
Tensile Strength: Ultimate (UTS), MPa 580
770
Tensile Strength: Yield (Proof), MPa 290
550

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1010
320
Melting Completion (Liquidus), °C 1440
1760
Melting Onset (Solidus), °C 1390
1700
Specific Heat Capacity, J/kg-K 480
500
Thermal Expansion, µm/m-K 16
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 19
48
Density, g/cm3 7.8
5.4
Embodied Carbon, kg CO2/kg material 3.9
31
Embodied Energy, MJ/kg 53
480
Embodied Water, L/kg 160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
94
Resilience: Unit (Modulus of Resilience), kJ/m3 210
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 20
40
Strength to Weight: Bending, points 20
35
Thermal Shock Resistance, points 13
48

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 17 to 22
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.7 to 71.9
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
14 to 16
Nickel (Ni), % 9.0 to 13
0
Nitrogen (N), % 0.1 to 0.2
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
83.5 to 86