MakeItFrom.com
Menu (ESC)

ACI-ASTM CF3MN Steel vs. S40945 Stainless Steel

Both ACI-ASTM CF3MN steel and S40945 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF3MN steel and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
25
Fatigue Strength, MPa 250
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Tensile Strength: Ultimate (UTS), MPa 580
430
Tensile Strength: Yield (Proof), MPa 290
230

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 1010
710
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
8.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.2
Embodied Energy, MJ/kg 53
31
Embodied Water, L/kg 160
94

Common Calculations

PREN (Pitting Resistance) 30
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
89
Resilience: Unit (Modulus of Resilience), kJ/m3 210
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 4.1
6.9
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17 to 22
10.5 to 11.7
Iron (Fe), % 58.7 to 71.9
85.1 to 89.3
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 13
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0.1 to 0.2
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0.050 to 0.2