MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8 Steel vs. EN 1.4362 Stainless Steel

Both ACI-ASTM CF8 steel and EN 1.4362 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8 steel and the bottom bar is EN 1.4362 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 55
25
Fatigue Strength, MPa 260
320
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
79
Tensile Strength: Ultimate (UTS), MPa 540
730
Tensile Strength: Yield (Proof), MPa 260
460

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 420
440
Maximum Temperature: Mechanical, °C 980
1060
Melting Completion (Liquidus), °C 1420
1420
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
14
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.9
Embodied Energy, MJ/kg 44
41
Embodied Water, L/kg 150
160

Common Calculations

PREN (Pitting Resistance) 20
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
160
Resilience: Unit (Modulus of Resilience), kJ/m3 160
530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
26
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 4.3
4.0
Thermal Shock Resistance, points 13
20

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 18 to 21
22 to 24.5
Copper (Cu), % 0
0.1 to 0.6
Iron (Fe), % 63.8 to 74
65.5 to 74.3
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
0.1 to 0.6
Nickel (Ni), % 8.0 to 11
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015