MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8 Steel vs. CC331G Bronze

ACI-ASTM CF8 steel belongs to the iron alloys classification, while CC331G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8 steel and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
140
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 55
20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 540
620
Tensile Strength: Yield (Proof), MPa 260
240

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 980
220
Melting Completion (Liquidus), °C 1420
1060
Melting Onset (Solidus), °C 1430
1000
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 16
61
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
14

Otherwise Unclassified Properties

Base Metal Price, % relative 16
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.1
3.2
Embodied Energy, MJ/kg 44
53
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
97
Resilience: Unit (Modulus of Resilience), kJ/m3 160
250
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 4.3
17
Thermal Shock Resistance, points 13
22

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
83 to 86.5
Iron (Fe), % 63.8 to 74
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 11
0 to 1.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5