MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8 Steel vs. CC496K Bronze

ACI-ASTM CF8 steel belongs to the iron alloys classification, while CC496K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8 steel and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
72
Elastic (Young's, Tensile) Modulus, GPa 200
97
Elongation at Break, % 55
8.6
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
36
Tensile Strength: Ultimate (UTS), MPa 540
210
Tensile Strength: Yield (Proof), MPa 260
99

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 980
140
Melting Completion (Liquidus), °C 1420
900
Melting Onset (Solidus), °C 1430
820
Specific Heat Capacity, J/kg-K 480
340
Thermal Conductivity, W/m-K 16
52
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 16
31
Density, g/cm3 7.8
9.2
Embodied Carbon, kg CO2/kg material 3.1
3.3
Embodied Energy, MJ/kg 44
52
Embodied Water, L/kg 150
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
15
Resilience: Unit (Modulus of Resilience), kJ/m3 160
50
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 19
6.5
Strength to Weight: Bending, points 19
8.6
Thermal Diffusivity, mm2/s 4.3
17
Thermal Shock Resistance, points 13
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
72 to 79.5
Iron (Fe), % 63.8 to 74
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0 to 1.5
0 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 11
0.5 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.1
Silicon (Si), % 0 to 2.0
0 to 0.010
Sulfur (S), % 0 to 0.040
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 2.0