MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8M Steel vs. C34500 Brass

ACI-ASTM CF8M steel belongs to the iron alloys classification, while C34500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8M steel and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 50
12 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 540
340 to 430
Tensile Strength: Yield (Proof), MPa 290
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1000
120
Melting Completion (Liquidus), °C 1440
910
Melting Onset (Solidus), °C 1400
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.8
2.6
Embodied Energy, MJ/kg 53
45
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 210
69 to 160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
12 to 15
Strength to Weight: Bending, points 19
13 to 16
Thermal Diffusivity, mm2/s 4.3
37
Thermal Shock Resistance, points 12
11 to 14

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 60.3 to 71
0 to 0.15
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 12
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4