MakeItFrom.com
Menu (ESC)

ACI-ASTM CF8M Steel vs. C95200 Bronze

ACI-ASTM CF8M steel belongs to the iron alloys classification, while C95200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CF8M steel and the bottom bar is C95200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
120
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 50
29
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 540
520
Tensile Strength: Yield (Proof), MPa 290
190

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1000
220
Melting Completion (Liquidus), °C 1440
1050
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
430
Thermal Conductivity, W/m-K 16
50
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
12

Otherwise Unclassified Properties

Base Metal Price, % relative 19
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.8
3.0
Embodied Energy, MJ/kg 53
50
Embodied Water, L/kg 160
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
120
Resilience: Unit (Modulus of Resilience), kJ/m3 210
170
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 4.3
14
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 60.3 to 71
2.5 to 4.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 9.0 to 12
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 1.0