MakeItFrom.com
Menu (ESC)

ACI-ASTM CG12 Steel vs. EN 1.0501 Steel

Both ACI-ASTM CG12 steel and EN 1.0501 steel are iron alloys. They have 67% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG12 steel and the bottom bar is EN 1.0501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
19
Fatigue Strength, MPa 190
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 550
560
Tensile Strength: Yield (Proof), MPa 220
280

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1040
400
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
48
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.4
Embodied Energy, MJ/kg 48
19
Embodied Water, L/kg 160
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
90
Resilience: Unit (Modulus of Resilience), kJ/m3 120
210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
20
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 12
18

Alloy Composition

Carbon (C), % 0 to 0.12
0.32 to 0.39
Chromium (Cr), % 20 to 23
0 to 0.4
Iron (Fe), % 60.3 to 70
97.4 to 99.18
Manganese (Mn), % 0 to 1.5
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 10 to 13
0 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 2.0
0 to 0.4
Sulfur (S), % 0 to 0.040
0 to 0.045