MakeItFrom.com
Menu (ESC)

ACI-ASTM CG12 Steel vs. C14700 Copper

ACI-ASTM CG12 steel belongs to the iron alloys classification, while C14700 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG12 steel and the bottom bar is C14700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 40
9.1 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Tensile Strength: Ultimate (UTS), MPa 550
240 to 320
Tensile Strength: Yield (Proof), MPa 220
85 to 250

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1040
200
Melting Completion (Liquidus), °C 1410
1080
Melting Onset (Solidus), °C 1370
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
370
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
95
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
96

Otherwise Unclassified Properties

Base Metal Price, % relative 18
30
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 3.3
2.6
Embodied Energy, MJ/kg 48
41
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
25 to 65
Resilience: Unit (Modulus of Resilience), kJ/m3 120
31 to 280
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
7.3 to 10
Strength to Weight: Bending, points 19
9.5 to 12
Thermal Diffusivity, mm2/s 4.0
110
Thermal Shock Resistance, points 12
8.4 to 12

Alloy Composition

Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
99.395 to 99.798
Iron (Fe), % 60.3 to 70
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 10 to 13
0
Phosphorus (P), % 0 to 0.040
0.0020 to 0.0050
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0.2 to 0.5
Residuals, % 0
0 to 0.1