MakeItFrom.com
Menu (ESC)

ACI-ASTM CG12 Steel vs. C85900 Brass

ACI-ASTM CG12 steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG12 steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
85
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40
30
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 550
460
Tensile Strength: Yield (Proof), MPa 220
190

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1040
130
Melting Completion (Liquidus), °C 1410
830
Melting Onset (Solidus), °C 1370
790
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
89
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
28

Otherwise Unclassified Properties

Base Metal Price, % relative 18
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.3
2.9
Embodied Energy, MJ/kg 48
49
Embodied Water, L/kg 160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
170
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 4.0
29
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 60.3 to 70
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0 to 0.010
Nickel (Ni), % 10 to 13
0 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 2.0
0 to 0.25
Sulfur (S), % 0 to 0.040
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7