MakeItFrom.com
Menu (ESC)

ACI-ASTM CG3M Steel vs. EN 2.4665 Nickel

ACI-ASTM CG3M steel belongs to the iron alloys classification, while EN 2.4665 nickel belongs to the nickel alloys. They have 54% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG3M steel and the bottom bar is EN 2.4665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 28
34
Fatigue Strength, MPa 200
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
81
Tensile Strength: Ultimate (UTS), MPa 580
790
Tensile Strength: Yield (Proof), MPa 270
300

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Maximum Temperature: Mechanical, °C 1020
990
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 20
55
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 4.1
9.2
Embodied Energy, MJ/kg 56
130
Embodied Water, L/kg 160
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
210
Resilience: Unit (Modulus of Resilience), kJ/m3 190
220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 20
26
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.1
3.2
Thermal Shock Resistance, points 13
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0.050 to 0.15
Chromium (Cr), % 18 to 21
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 58.9 to 70
17 to 20
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 3.0 to 4.0
8.0 to 10
Nickel (Ni), % 9.0 to 13
40.3 to 53.8
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Tungsten (W), % 0
0.2 to 1.0