MakeItFrom.com
Menu (ESC)

ACI-ASTM CG3M Steel vs. CC490K Brass

ACI-ASTM CG3M steel belongs to the iron alloys classification, while CC490K brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG3M steel and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
76
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 580
230
Tensile Strength: Yield (Proof), MPa 270
110

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1020
160
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1400
910
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 15
72
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
16

Otherwise Unclassified Properties

Base Metal Price, % relative 20
30
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 4.1
2.9
Embodied Energy, MJ/kg 56
47
Embodied Water, L/kg 160
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
28
Resilience: Unit (Modulus of Resilience), kJ/m3 190
54
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
7.3
Strength to Weight: Bending, points 20
9.5
Thermal Diffusivity, mm2/s 4.1
22
Thermal Shock Resistance, points 13
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
81 to 86
Iron (Fe), % 58.9 to 70
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 9.0 to 13
0 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.5
0 to 0.010
Sulfur (S), % 0 to 0.040
0 to 0.1
Tin (Sn), % 0
2.0 to 3.5
Zinc (Zn), % 0
7.0 to 9.5