MakeItFrom.com
Menu (ESC)

ACI-ASTM CG3M Steel vs. C73100 Nickel Silver

ACI-ASTM CG3M steel belongs to the iron alloys classification, while C73100 nickel silver belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG3M steel and the bottom bar is C73100 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
3.4 to 8.0
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 580
450 to 640
Tensile Strength: Yield (Proof), MPa 270
420 to 590

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1450
1030
Melting Onset (Solidus), °C 1400
1000
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 20
28
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 4.1
3.0
Embodied Energy, MJ/kg 56
49
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
21 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 190
790 to 1560
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 20
15 to 21
Strength to Weight: Bending, points 20
15 to 20
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 13
15 to 21

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
70.8 to 78
Iron (Fe), % 58.9 to 70
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 9.0 to 13
4.0 to 6.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
18 to 22
Residuals, % 0
0 to 0.5