MakeItFrom.com
Menu (ESC)

ACI-ASTM CG3M Steel vs. R58150 Titanium

ACI-ASTM CG3M steel belongs to the iron alloys classification, while R58150 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG3M steel and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 28
13
Fatigue Strength, MPa 200
330
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
52
Tensile Strength: Ultimate (UTS), MPa 580
770
Tensile Strength: Yield (Proof), MPa 270
550

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1020
320
Melting Completion (Liquidus), °C 1450
1760
Melting Onset (Solidus), °C 1400
1700
Specific Heat Capacity, J/kg-K 470
500
Thermal Expansion, µm/m-K 16
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 20
48
Density, g/cm3 7.9
5.4
Embodied Carbon, kg CO2/kg material 4.1
31
Embodied Energy, MJ/kg 56
480
Embodied Water, L/kg 160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
94
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 20
40
Strength to Weight: Bending, points 20
35
Thermal Shock Resistance, points 13
48

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 18 to 21
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.9 to 70
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 3.0 to 4.0
14 to 16
Nickel (Ni), % 9.0 to 13
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
83.5 to 86