MakeItFrom.com
Menu (ESC)

ACI-ASTM CG3M Steel vs. S32750 Stainless Steel

Both ACI-ASTM CG3M steel and S32750 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG3M steel and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 28
17
Fatigue Strength, MPa 200
360
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 79
81
Tensile Strength: Ultimate (UTS), MPa 580
860
Tensile Strength: Yield (Proof), MPa 270
590

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 1020
1100
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
21
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
4.1
Embodied Energy, MJ/kg 56
56
Embodied Water, L/kg 160
180

Common Calculations

PREN (Pitting Resistance) 31
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 190
860
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
31
Strength to Weight: Bending, points 20
26
Thermal Diffusivity, mm2/s 4.1
4.0
Thermal Shock Resistance, points 13
25

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 18 to 21
24 to 26
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 58.9 to 70
58.1 to 66.8
Manganese (Mn), % 0 to 1.5
0 to 1.2
Molybdenum (Mo), % 3.0 to 4.0
3.0 to 5.0
Nickel (Ni), % 9.0 to 13
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.5
0 to 0.8
Sulfur (S), % 0 to 0.040
0 to 0.020