MakeItFrom.com
Menu (ESC)

ACI-ASTM CG3M Steel vs. S40945 Stainless Steel

Both ACI-ASTM CG3M steel and S40945 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG3M steel and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
25
Fatigue Strength, MPa 200
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
75
Tensile Strength: Ultimate (UTS), MPa 580
430
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 1020
710
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
8.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.1
2.2
Embodied Energy, MJ/kg 56
31
Embodied Water, L/kg 160
94

Common Calculations

PREN (Pitting Resistance) 31
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
89
Resilience: Unit (Modulus of Resilience), kJ/m3 190
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 4.1
6.9
Thermal Shock Resistance, points 13
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 18 to 21
10.5 to 11.7
Iron (Fe), % 58.9 to 70
85.1 to 89.3
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 9.0 to 13
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.030
Titanium (Ti), % 0
0.050 to 0.2