MakeItFrom.com
Menu (ESC)

ACI-ASTM CG6MMN Steel vs. 3303 Aluminum

ACI-ASTM CG6MMN steel belongs to the iron alloys classification, while 3303 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CG6MMN steel and the bottom bar is 3303 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
23
Fatigue Strength, MPa 260
43
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 670
110
Tensile Strength: Yield (Proof), MPa 320
39

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1080
180
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 22
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 4.8
8.1
Embodied Energy, MJ/kg 68
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
20
Resilience: Unit (Modulus of Resilience), kJ/m3 260
11
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 24
11
Strength to Weight: Bending, points 22
18
Thermal Shock Resistance, points 14
4.8

Alloy Composition

Aluminum (Al), % 0
96.6 to 99
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0
0.050 to 0.2
Iron (Fe), % 51.9 to 62.1
0 to 0.7
Manganese (Mn), % 4.0 to 6.0
1.0 to 1.5
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15