ACI-ASTM CG6MMN Steel vs. EN 1.7108 Steel
Both ACI-ASTM CG6MMN steel and EN 1.7108 steel are iron alloys. They have 59% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.
For each property being compared, the top bar is ACI-ASTM CG6MMN steel and the bottom bar is EN 1.7108 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 190 | |
200 to 510 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 79 | |
72 |
Tensile Strength: Ultimate (UTS), MPa | 670 | |
670 to 2070 |
Thermal Properties
Latent Heat of Fusion, J/g | 300 | |
280 |
Maximum Temperature: Mechanical, °C | 1080 | |
410 |
Melting Completion (Liquidus), °C | 1420 | |
1430 |
Melting Onset (Solidus), °C | 1380 | |
1390 |
Specific Heat Capacity, J/kg-K | 480 | |
480 |
Thermal Expansion, µm/m-K | 17 | |
13 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 22 | |
2.1 |
Density, g/cm3 | 7.8 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 4.8 | |
1.5 |
Embodied Energy, MJ/kg | 68 | |
20 |
Embodied Water, L/kg | 180 | |
47 |
Common Calculations
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 24 | |
24 to 75 |
Strength to Weight: Bending, points | 22 | |
22 to 47 |
Thermal Shock Resistance, points | 14 | |
20 to 63 |
Alloy Composition
Carbon (C), % | 0 to 0.060 | |
0.57 to 0.65 |
Chromium (Cr), % | 20.5 to 23.5 | |
0.2 to 0.45 |
Iron (Fe), % | 51.9 to 62.1 | |
95.9 to 96.9 |
Manganese (Mn), % | 4.0 to 6.0 | |
0.7 to 1.0 |
Molybdenum (Mo), % | 1.5 to 3.0 | |
0 |
Nickel (Ni), % | 11.5 to 13.5 | |
0 |
Niobium (Nb), % | 0.1 to 0.3 | |
0 |
Nitrogen (N), % | 0.2 to 0.4 | |
0 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.025 |
Silicon (Si), % | 0 to 1.0 | |
1.6 to 2.0 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.025 |
Vanadium (V), % | 0.1 to 0.3 | |
0 |