MakeItFrom.com
Menu (ESC)

ACI-ASTM CG6MMN Steel vs. Grade 26 Titanium

ACI-ASTM CG6MMN steel belongs to the iron alloys classification, while grade 26 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG6MMN steel and the bottom bar is grade 26 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
23
Fatigue Strength, MPa 260
250
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 670
390
Tensile Strength: Yield (Proof), MPa 320
350

Thermal Properties

Latent Heat of Fusion, J/g 300
420
Maximum Temperature: Mechanical, °C 1080
320
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Expansion, µm/m-K 17
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 22
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 4.8
33
Embodied Energy, MJ/kg 68
530
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
85
Resilience: Unit (Modulus of Resilience), kJ/m3 260
580
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
26
Thermal Shock Resistance, points 14
28

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 20.5 to 23.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 51.9 to 62.1
0 to 0.3
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.92
Vanadium (V), % 0.1 to 0.3
0
Residuals, % 0
0 to 0.4