MakeItFrom.com
Menu (ESC)

ACI-ASTM CG6MMN Steel vs. C42200 Brass

ACI-ASTM CG6MMN steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG6MMN steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
2.0 to 46
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 670
300 to 610
Tensile Strength: Yield (Proof), MPa 320
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1080
170
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 22
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 4.8
2.7
Embodied Energy, MJ/kg 68
44
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
49 to 1460
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
9.5 to 19
Strength to Weight: Bending, points 22
11 to 18
Thermal Shock Resistance, points 14
10 to 21

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 51.9 to 62.1
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.8 to 1.4
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5