MakeItFrom.com
Menu (ESC)

ACI-ASTM CG6MMN Steel vs. N06985 Nickel

ACI-ASTM CG6MMN steel belongs to the iron alloys classification, while N06985 nickel belongs to the nickel alloys. They have 57% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CG6MMN steel and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
45
Fatigue Strength, MPa 260
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
80
Tensile Strength: Ultimate (UTS), MPa 670
690
Tensile Strength: Yield (Proof), MPa 320
260

Thermal Properties

Latent Heat of Fusion, J/g 300
320
Maximum Temperature: Mechanical, °C 1080
990
Melting Completion (Liquidus), °C 1420
1350
Melting Onset (Solidus), °C 1380
1260
Specific Heat Capacity, J/kg-K 480
450
Thermal Expansion, µm/m-K 17
15

Otherwise Unclassified Properties

Base Metal Price, % relative 22
55
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 4.8
8.8
Embodied Energy, MJ/kg 68
120
Embodied Water, L/kg 180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
250
Resilience: Unit (Modulus of Resilience), kJ/m3 260
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 22
21
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.015
Chromium (Cr), % 20.5 to 23.5
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 51.9 to 62.1
18 to 21
Manganese (Mn), % 4.0 to 6.0
0 to 1.0
Molybdenum (Mo), % 1.5 to 3.0
6.0 to 8.0
Nickel (Ni), % 11.5 to 13.5
35.9 to 53.5
Niobium (Nb), % 0.1 to 0.3
0 to 0.5
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 0
0 to 1.5
Vanadium (V), % 0.1 to 0.3
0