MakeItFrom.com
Menu (ESC)

ACI-ASTM CG8M Steel vs. 360.0 Aluminum

ACI-ASTM CG8M steel belongs to the iron alloys classification, while 360.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CG8M steel and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
75
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 45
2.5
Fatigue Strength, MPa 280
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 550
300
Tensile Strength: Yield (Proof), MPa 300
170

Thermal Properties

Latent Heat of Fusion, J/g 300
530
Maximum Temperature: Mechanical, °C 1020
170
Melting Completion (Liquidus), °C 1450
590
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
34
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 4.1
7.8
Embodied Energy, MJ/kg 56
140
Embodied Water, L/kg 160
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 220
200
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 19
38
Thermal Diffusivity, mm2/s 4.3
55
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0
85.1 to 90.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 58.8 to 70
0 to 2.0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.5
0 to 0.35
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 9.0 to 13
0 to 0.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
9.0 to 10
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25