MakeItFrom.com
Menu (ESC)

ACI-ASTM CH10 Steel vs. EN 1.1203 Steel

Both ACI-ASTM CH10 steel and EN 1.1203 steel are iron alloys. They have 62% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH10 steel and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
12 to 15
Fatigue Strength, MPa 180
210 to 310
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
72
Tensile Strength: Ultimate (UTS), MPa 540
690 to 780
Tensile Strength: Yield (Proof), MPa 230
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
48
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
1.4
Embodied Energy, MJ/kg 53
19
Embodied Water, L/kg 180
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
310 to 610
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
25 to 28
Strength to Weight: Bending, points 19
22 to 24
Thermal Diffusivity, mm2/s 3.9
13
Thermal Shock Resistance, points 12
22 to 25

Alloy Composition

Carbon (C), % 0 to 0.1
0.52 to 0.6
Chromium (Cr), % 22 to 26
0 to 0.4
Iron (Fe), % 54.8 to 66
97.1 to 98.9
Manganese (Mn), % 0 to 1.5
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 12 to 15
0 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 0.4
Sulfur (S), % 0 to 0.040
0 to 0.035