MakeItFrom.com
Menu (ESC)

ACI-ASTM CH10 Steel vs. C69400 Brass

ACI-ASTM CH10 steel belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH10 steel and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
17
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 540
570
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1410
920
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 20
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.7
2.7
Embodied Energy, MJ/kg 53
44
Embodied Water, L/kg 180
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
80
Resilience: Unit (Modulus of Resilience), kJ/m3 140
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 3.9
7.7
Thermal Shock Resistance, points 12
20

Alloy Composition

Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 22 to 26
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 54.8 to 66
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
3.5 to 4.5
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5