MakeItFrom.com
Menu (ESC)

ACI-ASTM CH10 Steel vs. C86800 Bronze

ACI-ASTM CH10 steel belongs to the iron alloys classification, while C86800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH10 steel and the bottom bar is C86800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
22
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 540
570
Tensile Strength: Yield (Proof), MPa 230
260

Thermal Properties

Latent Heat of Fusion, J/g 310
180
Maximum Temperature: Mechanical, °C 1100
140
Melting Completion (Liquidus), °C 1410
900
Melting Onset (Solidus), °C 1370
880
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
10

Otherwise Unclassified Properties

Base Metal Price, % relative 20
24
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
3.0
Embodied Energy, MJ/kg 53
51
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
100
Resilience: Unit (Modulus of Resilience), kJ/m3 140
310
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19
20
Strength to Weight: Bending, points 19
19
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 0
0 to 2.0
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 22 to 26
0
Copper (Cu), % 0
53.5 to 57
Iron (Fe), % 54.8 to 66
1.0 to 2.5
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
2.5 to 4.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
2.5 to 4.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
28.3 to 40.5
Residuals, % 0
0 to 1.0