MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. 5182 Aluminum

ACI-ASTM CH20 steel belongs to the iron alloys classification, while 5182 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 38
1.1 to 12
Fatigue Strength, MPa 290
100 to 130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
25
Tensile Strength: Ultimate (UTS), MPa 610
280 to 420
Tensile Strength: Yield (Proof), MPa 350
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1430
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
94

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.7
8.9
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 300
120 to 950
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22
29 to 44
Strength to Weight: Bending, points 21
36 to 47
Thermal Diffusivity, mm2/s 3.7
53
Thermal Shock Resistance, points 15
12 to 19

Alloy Composition

Aluminum (Al), % 0
93.2 to 95.8
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 26
0 to 0.1
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 54.7 to 66
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 1.5
0.2 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0 to 0.2
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15