MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. 6106 Aluminum

ACI-ASTM CH20 steel belongs to the iron alloys classification, while 6106 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is 6106 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 38
9.1
Fatigue Strength, MPa 290
88
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
26
Tensile Strength: Ultimate (UTS), MPa 610
290
Tensile Strength: Yield (Proof), MPa 350
220

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1410
660
Melting Onset (Solidus), °C 1430
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 14
190
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
49
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
160

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.7
8.3
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
24
Resilience: Unit (Modulus of Resilience), kJ/m3 300
370
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 22
29
Strength to Weight: Bending, points 21
35
Thermal Diffusivity, mm2/s 3.7
78
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 0
97.2 to 99.3
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 26
0 to 0.2
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 54.7 to 66
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.5
0.050 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0.3 to 0.6
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15