MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. EN 1.0535 Steel

Both ACI-ASTM CH20 steel and EN 1.0535 steel are iron alloys. They have 62% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is EN 1.0535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 38
12
Fatigue Strength, MPa 290
210
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
72
Tensile Strength: Ultimate (UTS), MPa 610
690
Tensile Strength: Yield (Proof), MPa 350
340

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
48
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
1.4
Embodied Energy, MJ/kg 53
19
Embodied Water, L/kg 180
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
69
Resilience: Unit (Modulus of Resilience), kJ/m3 300
310
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 3.7
13
Thermal Shock Resistance, points 15
22

Alloy Composition

Carbon (C), % 0 to 0.2
0.52 to 0.6
Chromium (Cr), % 22 to 26
0 to 0.4
Iron (Fe), % 54.7 to 66
97.1 to 98.9
Manganese (Mn), % 0 to 1.5
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 12 to 15
0 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 2.0
0 to 0.4
Sulfur (S), % 0 to 0.040
0 to 0.045