MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. EN 1.4031 Stainless Steel

Both ACI-ASTM CH20 steel and EN 1.4031 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is EN 1.4031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 38
11 to 13
Fatigue Strength, MPa 290
220 to 400
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 610
670 to 900
Tensile Strength: Yield (Proof), MPa 350
390 to 730

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 440
390
Maximum Temperature: Mechanical, °C 1100
770
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
30
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 20
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
1.9
Embodied Energy, MJ/kg 53
27
Embodied Water, L/kg 180
100

Common Calculations

PREN (Pitting Resistance) 25
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
77 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 300
380 to 1360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
24 to 32
Strength to Weight: Bending, points 21
22 to 27
Thermal Diffusivity, mm2/s 3.7
8.1
Thermal Shock Resistance, points 15
23 to 32

Alloy Composition

Carbon (C), % 0 to 0.2
0.36 to 0.42
Chromium (Cr), % 22 to 26
12.5 to 14.5
Iron (Fe), % 54.7 to 66
83 to 87.1
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015