MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. EN 1.4630 Stainless Steel

Both ACI-ASTM CH20 steel and EN 1.4630 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is EN 1.4630 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 38
23
Fatigue Strength, MPa 290
170
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 610
480
Tensile Strength: Yield (Proof), MPa 350
250

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
520
Maximum Temperature: Mechanical, °C 1100
800
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
28
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.5
Embodied Energy, MJ/kg 53
36
Embodied Water, L/kg 180
120

Common Calculations

PREN (Pitting Resistance) 25
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
92
Resilience: Unit (Modulus of Resilience), kJ/m3 300
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 3.7
7.5
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0
0 to 1.5
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 22 to 26
13 to 16
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 54.7 to 66
77.1 to 86.7
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 12 to 15
0 to 0.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 2.0
0.2 to 1.5
Sulfur (S), % 0 to 0.040
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.8