MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. EN 1.4983 Stainless Steel

Both ACI-ASTM CH20 steel and EN 1.4983 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is EN 1.4983 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 38
40
Fatigue Strength, MPa 290
200
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
78
Tensile Strength: Ultimate (UTS), MPa 610
630
Tensile Strength: Yield (Proof), MPa 350
230

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
520
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 20
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
4.1
Embodied Energy, MJ/kg 53
56
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 25
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
200
Resilience: Unit (Modulus of Resilience), kJ/m3 300
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 3.7
4.0
Thermal Shock Resistance, points 15
14

Alloy Composition

Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0 to 0.2
0.040 to 0.080
Chromium (Cr), % 22 to 26
16 to 18
Iron (Fe), % 54.7 to 66
61.8 to 69.6
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
2.0 to 2.5
Nickel (Ni), % 12 to 15
12 to 14
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 0.75
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.8