MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. EN 1.8893 Steel

Both ACI-ASTM CH20 steel and EN 1.8893 steel are iron alloys. They have 62% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
250
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 38
16
Fatigue Strength, MPa 290
470
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
73
Tensile Strength: Ultimate (UTS), MPa 610
830
Tensile Strength: Yield (Proof), MPa 350
720

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
40
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
1.7
Embodied Energy, MJ/kg 53
23
Embodied Water, L/kg 180
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
130
Resilience: Unit (Modulus of Resilience), kJ/m3 300
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
29
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 3.7
11
Thermal Shock Resistance, points 15
24

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.2
0 to 0.2
Chromium (Cr), % 22 to 26
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 54.7 to 66
95.6 to 98
Manganese (Mn), % 0 to 1.5
1.4 to 1.7
Molybdenum (Mo), % 0 to 0.5
0.3 to 0.45
Nickel (Ni), % 12 to 15
0.3 to 0.7
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.025
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12