MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. Grade Ti-Pd18 Titanium

ACI-ASTM CH20 steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
320
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 38
17
Fatigue Strength, MPa 290
350
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 610
710
Tensile Strength: Yield (Proof), MPa 350
540

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
330
Melting Completion (Liquidus), °C 1410
1640
Melting Onset (Solidus), °C 1430
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 14
8.2
Thermal Expansion, µm/m-K 15
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.7
41
Embodied Energy, MJ/kg 53
670
Embodied Water, L/kg 180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 300
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22
44
Strength to Weight: Bending, points 21
39
Thermal Diffusivity, mm2/s 3.7
3.3
Thermal Shock Resistance, points 15
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.2
0 to 0.1
Chromium (Cr), % 22 to 26
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 54.7 to 66
0 to 0.25
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4