MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. C41500 Brass

ACI-ASTM CH20 steel belongs to the iron alloys classification, while C41500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is C41500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 38
2.0 to 42
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 610
340 to 560
Tensile Strength: Yield (Proof), MPa 350
190 to 550

Thermal Properties

Latent Heat of Fusion, J/g 310
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1430
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 20
30
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.7
2.8
Embodied Energy, MJ/kg 53
45
Embodied Water, L/kg 180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
11 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 300
160 to 1340
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22
11 to 18
Strength to Weight: Bending, points 21
12 to 17
Thermal Diffusivity, mm2/s 3.7
37
Thermal Shock Resistance, points 15
12 to 20

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 26
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 54.7 to 66
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
1.5 to 2.2
Zinc (Zn), % 0
4.2 to 9.5
Residuals, % 0
0 to 0.5