MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. C68400 Brass

ACI-ASTM CH20 steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
150
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 38
18
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 610
540
Tensile Strength: Yield (Proof), MPa 350
310

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1410
840
Melting Onset (Solidus), °C 1430
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 14
66
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
87
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
99

Otherwise Unclassified Properties

Base Metal Price, % relative 20
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
2.7
Embodied Energy, MJ/kg 53
47
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
81
Resilience: Unit (Modulus of Resilience), kJ/m3 300
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 3.7
21
Thermal Shock Resistance, points 15
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 26
0
Copper (Cu), % 0
59 to 64
Iron (Fe), % 54.7 to 66
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0.2 to 1.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0 to 0.5
Phosphorus (P), % 0 to 0.040
0.030 to 0.3
Silicon (Si), % 0 to 2.0
1.5 to 2.5
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5