MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. C86200 Bronze

ACI-ASTM CH20 steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 38
21
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 610
710
Tensile Strength: Yield (Proof), MPa 350
350

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1410
940
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 14
35
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 20
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.7
2.9
Embodied Energy, MJ/kg 53
49
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
120
Resilience: Unit (Modulus of Resilience), kJ/m3 300
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 3.7
11
Thermal Shock Resistance, points 15
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 22 to 26
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 54.7 to 66
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
2.5 to 5.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0