MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. S32750 Stainless Steel

Both ACI-ASTM CH20 steel and S32750 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 38
17
Fatigue Strength, MPa 290
360
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 78
81
Tensile Strength: Ultimate (UTS), MPa 610
860
Tensile Strength: Yield (Proof), MPa 350
590

Thermal Properties

Latent Heat of Fusion, J/g 310
300
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
15
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
21
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.7
4.1
Embodied Energy, MJ/kg 53
56
Embodied Water, L/kg 180
180

Common Calculations

PREN (Pitting Resistance) 25
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
130
Resilience: Unit (Modulus of Resilience), kJ/m3 300
860
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
31
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 3.7
4.0
Thermal Shock Resistance, points 15
25

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 22 to 26
24 to 26
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 54.7 to 66
58.1 to 66.8
Manganese (Mn), % 0 to 1.5
0 to 1.2
Molybdenum (Mo), % 0 to 0.5
3.0 to 5.0
Nickel (Ni), % 12 to 15
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 0.8
Sulfur (S), % 0 to 0.040
0 to 0.020