MakeItFrom.com
Menu (ESC)

ACI-ASTM CH20 Steel vs. S44537 Stainless Steel

Both ACI-ASTM CH20 steel and S44537 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CH20 steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 38
21
Fatigue Strength, MPa 290
230
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 78
79
Tensile Strength: Ultimate (UTS), MPa 610
510
Tensile Strength: Yield (Proof), MPa 350
360

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
530
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1410
1480
Melting Onset (Solidus), °C 1430
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 14
21
Thermal Expansion, µm/m-K 15
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 20
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.7
3.4
Embodied Energy, MJ/kg 53
50
Embodied Water, L/kg 180
140

Common Calculations

PREN (Pitting Resistance) 25
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
95
Resilience: Unit (Modulus of Resilience), kJ/m3 300
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 3.7
5.6
Thermal Shock Resistance, points 15
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 22 to 26
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 54.7 to 66
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.5
0 to 0.8
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 12 to 15
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 2.0
0.1 to 0.6
Sulfur (S), % 0 to 0.040
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0