MakeItFrom.com
Menu (ESC)

ACI-ASTM CK20 Steel vs. AISI 348 Stainless Steel

Both ACI-ASTM CK20 steel and AISI 348 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CK20 steel and the bottom bar is AISI 348 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 37
41
Fatigue Strength, MPa 220
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 530
580
Tensile Strength: Yield (Proof), MPa 260
230

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
480
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
16
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 25
19
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
3.7
Embodied Energy, MJ/kg 62
54
Embodied Water, L/kg 190
150

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
190
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 3.7
4.2
Thermal Shock Resistance, points 13
13

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 23 to 27
17 to 19
Cobalt (Co), % 0
0 to 0.2
Iron (Fe), % 46.7 to 58
63.8 to 74
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 19 to 22
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 2.0
0 to 0.75
Sulfur (S), % 0 to 0.040
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1