MakeItFrom.com
Menu (ESC)

ACI-ASTM CK20 Steel vs. EN 1.4941 Stainless Steel

Both ACI-ASTM CK20 steel and EN 1.4941 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CK20 steel and the bottom bar is EN 1.4941 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 37
39
Fatigue Strength, MPa 220
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 530
590
Tensile Strength: Yield (Proof), MPa 260
210

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
520
Maximum Temperature: Mechanical, °C 1100
940
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 14
16
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 25
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.4
3.3
Embodied Energy, MJ/kg 62
47
Embodied Water, L/kg 190
140

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
180
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 3.7
4.3
Thermal Shock Resistance, points 13
13

Alloy Composition

Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0 to 0.2
0.040 to 0.080
Chromium (Cr), % 23 to 27
17 to 19
Iron (Fe), % 46.7 to 58
65.1 to 73.6
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 19 to 22
9.0 to 12
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 2.0
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.8