MakeItFrom.com
Menu (ESC)

ACI-ASTM CK20 Steel vs. CC480K Bronze

ACI-ASTM CK20 steel belongs to the iron alloys classification, while CC480K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CK20 steel and the bottom bar is CC480K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
88
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 37
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 530
300
Tensile Strength: Yield (Proof), MPa 260
180

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1400
1010
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 14
63
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
35
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 4.4
3.7
Embodied Energy, MJ/kg 62
59
Embodied Water, L/kg 190
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
35
Resilience: Unit (Modulus of Resilience), kJ/m3 170
140
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
9.6
Strength to Weight: Bending, points 19
11
Thermal Diffusivity, mm2/s 3.7
20
Thermal Shock Resistance, points 13
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0
Copper (Cu), % 0
86 to 90
Iron (Fe), % 46.7 to 58
0 to 0.2
Lead (Pb), % 0
0 to 1.0
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 19 to 22
0 to 2.0
Phosphorus (P), % 0 to 0.040
0 to 0.2
Silicon (Si), % 0 to 2.0
0 to 0.020
Sulfur (S), % 0 to 0.040
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.5