MakeItFrom.com
Menu (ESC)

ACI-ASTM CK20 Steel vs. C28000 Muntz Metal

ACI-ASTM CK20 steel belongs to the iron alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CK20 steel and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 37
10 to 45
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 530
330 to 610
Tensile Strength: Yield (Proof), MPa 260
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 310
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1400
900
Melting Onset (Solidus), °C 1430
900
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
31

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 4.4
2.7
Embodied Energy, MJ/kg 62
46
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110 to 670
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19
11 to 21
Strength to Weight: Bending, points 19
13 to 20
Thermal Diffusivity, mm2/s 3.7
40
Thermal Shock Resistance, points 13
11 to 20

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 46.7 to 58
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3