MakeItFrom.com
Menu (ESC)

ACI-ASTM CK35MN Steel vs. 5082 Aluminum

ACI-ASTM CK35MN steel belongs to the iron alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CK35MN steel and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 40
1.1
Fatigue Strength, MPa 270
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
25
Tensile Strength: Ultimate (UTS), MPa 650
380 to 400
Tensile Strength: Yield (Proof), MPa 310
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
110

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.9
8.9
Embodied Energy, MJ/kg 81
150
Embodied Water, L/kg 210
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 240
670 to 870
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22
39 to 41
Strength to Weight: Bending, points 21
43 to 45
Thermal Diffusivity, mm2/s 3.3
54
Thermal Shock Resistance, points 14
17 to 18

Alloy Composition

Aluminum (Al), % 0
93.5 to 96
Carbon (C), % 0 to 0.035
0
Chromium (Cr), % 22 to 24
0 to 0.15
Copper (Cu), % 0 to 0.4
0 to 0.15
Iron (Fe), % 43.4 to 51.8
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 2.0
0 to 0.15
Molybdenum (Mo), % 6.0 to 6.8
0
Nickel (Ni), % 20 to 22
0
Nitrogen (N), % 0.21 to 0.32
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15